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The problem of finding a T-periodic solution of a forced dissipative system of ordinary dif- 
ferential equations is most conveniently reformulated as a fixed point problem of a Poincare 
map mapping the phase space at t = 0 into the phase space at t = T, and the stability of the 
periodic response is equivalent to the stability of the fixed point. It is shown how the problem 
of determining quasi-periodic solutions of forced systems with two forcing frequencies may be 
reformulated as a fixed point problem of a new type of Poincare map that also opens the 
possibility of treating quasi-periodic solutions with more than two frequencies, as well as 
treating bifurcating quasi-periodic solutions of autonomous equations. Three examples are 
considered: one in which the exact solution is known, and two others where the quasi-periodic 
solutions have been determined by other means. 0 1985 Academic Press, Inc. 

1. INTRODUCTION 

In this section we first state the problem. Second, we review a method used to 
solve this problem, and third we describe the new approach to the solution of the 
problem. 

We consider a dissipative system of forced ordinary differential equations (ODE): 

ci =f(t, x, 01, 02,.-, up) 

~ER”,~:RxR”xRP++R” (l-1) 

nal,p>,l 

f is sufficiently smooth. 

The p frequencies (0, ,..., wP} are fixed. It is assumed that the steady state is a 
quasi-periodic function q where 

4 = q(w1 L-, up t) (1.2) 
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and q is 2x-periodic in each of its arguments. If q shall be a true quasi-periodic 
function the numbers w,,..., op must be incommensurable, which means that no 
vanishing linear combination ci wi + . . + cpwp exists with rational coefficients 
c , ) . ..) cp 

The number of frequencies can be reduced if (0, ,..., w,} is not incommensurable. 
In our algorithm, however, we permit commensurable as well as incommensurable 
frequencies. For p = 1 we have the problem of determining a periodic solution of 
(1.1). Here shooting methods are efficient, which try to find a solution that take on 
the same value in both ends of the interval [0, T], where T= 2x/o,. 

Let us reformulate this by introducing the Poincare map. The Poincare map has 
domain in state space at t = 0 and range in state space at t = T. Let x(t) be the 
solution of (1.1) for which x(0) = x0. Then the Poincare map P maps x0 into x(T), 
that is, x(T) = P(xo). The periodic solution q(t) is then a fixed point for the map P, 
that is, q(T) = q(O), and the stability of the periodic solution is equivalent to the 
stability of the fixed point. For p = 2 we seek a quasi-periodic solution, q(w, t, w,t). 
The only method known to the author is due to Chua and Ushida [l]. They 
assume a generalized Fourier series 

x=a,+ f [a*j-, cos v,t + u2i sin vit] 
i= I 

V,=m#, + ‘.. $rn,,Op 

m ,i ,..., mp, are integers such that vi > 0. 

(1.3) 

They truncate the series at a certain number M, and derive a system of equations 
for the coefficients (vectors) aO, a,, a2 ,... . 

We shall instead use a Poincare map. First we have to define a stroboscopic 
function, s. If x(t) is the solution of (1.1) with x(0) = x,,, we let the stroboscopic 
function take on the values 

x(O), 4 T, 1, x(2T, ), x(3T, ),..., T, = g 

in the points zO, ti, TV, z3 ,... where 

rk = kT, modulo T2, k=O, 1,2 ,..., r,=2”. 
02 

We so to speak eliminate one of the 2a-periodic arguments of q. 
The Poincare map P then maps s(0) ( = x(0)) into s(T,), thus s( T2) = P(s(0)). 

We shall in fact use a slightly different definition of Tk which allow us to compute 
s(T,) by interpolation. We have found the quasi-periodic solution when 

s( T2) = s(O). 
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When three periods Ti, T2, and T3 are given, we may define a stroboscopic 
function s of two variables. The first variable is tC1l = t mod T2 and the second is 
rczl = t mod Tj. The Poincare map then maps ~(0, 0) =x(O) into s(T,, T3). We 
have found the quasi-periodic solution when s( T2, T,) = ~(0, 0). 

2. METHOD 

In this section we first consider the Poincare map when one frequency w  is given 
and show how to use this map in obtaining periodic solutions. Next we describe the 
new Poincare map which makes it possible to determine the quasi-periodic 
solution. In both cases the Poincare map transforms the problem of finding periodic 
and quasi-periodic solutions to that of finding fixed points. In the next section we 
describe how to determine the stability of the fixed point. Poincart maps for 
autonomous equations are well known; they are described in [4]. 

We first describe the Poincare map when p = 1 by considering the equation 

i =A& x, @), XER” (2.1) 

where f is periodic with period T= 271/o, thus f(t, x, o) =f(t + T, x, w). We want 
to find the T-periodic solution q(t) of (2.1) for which 

4 =f(t, q,m) 

q(O) = q( 0 
(2.2) 

Now let u(0) be an approximation to q(0). 
We define the Poincare map P as follows: 

P:R”+R” 

u(T) = fY40)) 
(2.3) 

where u(t) is the solution of (2.1) with u(0) as the initial value. What does P do? It 
maps a point u(0) in state space at t = 0 into that point u(T) in state space at t = T 
where the trajectory through u(0) ends at t = T. This map may not be defined in all 
of the state space, but it is certainly defined in some neighbourhood of the periodic 
solution. The periodic solution is seen to be a fixed point of P. 

The map P can be used to define a map Q as follows: 

Q=P-I (2.4) 

where Z is the identity. Of course the domain and the range of Q equal the domain 
and the range of P. 

We see that Q maps the periodic solution into a zero. Newton’s method is very 
useful for the purpose of finding zeros. The values of Q(x) and the derivative De(x) 
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of Q(x) needed in Newton’s method are computed numerically. As an example we 
find thejth column of De(x) when 

Y = Q(x). 

We perturb x by the vector ~5~ in the jth coordinate direction, compute 

and use the difference approximation: 

jth column of IIQ = z. 
J., 

When all columns of De(x) has been computed the Newton method yields 

X new = x - lL~Qb,l - ’ Y, Y = Q(x) (2.5) 

and x,,, shall be used in the next iteration. 
This process is repeated until IlQ(x)ll < E for some preassigned E. The process is 

stopped if too many iterations are performed. This could be an indication of a too 
poor initial guess. 

Now let us take p = 2, and we have the quasi-periodic solution q(wl t, co2 t) of 

i=f(t, x, Wl, 02) (2.6) 

where q is 2rc-periodic in both arguments. Take tk = kT, = k. 27c/w,, k E Z + Define 

zk= 1+ i, if 0<2,<+ 
* (2.7) = 
tk if i < 2, < 1 

where 2, = (tk/TZ) mod 1. 
Then we may define a (vector) function s(.), S: (0) u [t, $1 + R”, as follows: 

40) =q(O, 0) 

= q = q(o, hik) = q(o, 2nrk) for k> 1. 

We shall call s the stroboscopic function. Equations (2.8) show that if q is 
quasi-periodic, then s is periodic with period 1 on any interval of length 1, so 
s(O) = s( 1). However, no k can be chosen to make rk = 1, but let K be a finite set of 
k’s ordered increasingly such that 

1 - Eq < zk < 1 + Ey, Eq>O, kEK (2.9) 

and then interpolate each coordinate of s on the net rk, k E K, to obtain s( 1). 
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Let u(0) be some approximation to q(0, 0), and let u(t) be the solution of (2.6) 
with u(0) as initial value. Then we set 

S(Tk) = uW1) for keK; s(0) = u(0). (2.10) 

We interpolate the stroboscopic function to find s( 1). Therefore we define the Poin- 
care map by 

P: R”+R” 

s( 1) = P(s(0)) = P(u(0)). 
(2.11) 

It should be added that s is not periodic, not even continuous, unless u(0) is on the 
quasi-periodic solution. s can be made continuous if we restrict k to a subset R of 
K, where tk is a monotonic increasing or decreasing sequence for k E i?. 

The problem of finding the quasi-periodic solution is hereby reduced to the 
problem of finding the fixed point of (2.11). 

We shall also indicate how the case p = 3 is treated in a similar way. This may 
easily be extended to higher values of p. We seek the solution q(o, t, co2 t, co3 t) of 

i =f(t, x, 01, w2, Q-)3). 

q is 2x-periodic in each argument. Take tk = k. T, , k E Z + . Define 

(2.12) 

(2.13) 

where 
fill =$-mod 1 

2 

ii’] = -$ mod 1. 
3 

Equation (2.13) implies that the points (zi’l, ri21), k E Z, , are inside a square in R2 
with center in (1, 1) and side 1. When t = tk, k E Z + , we consider q on this square, 
because the 2n-periodicity in each argument of q yields 

q(O, tk, u2t,, u,t,) = q 
( 

2K 
O, g tk, 7; t, = q(O,274’, 2n42’). 

2 3 ) 

We define the stroboscopic (vector) function s(*, .), S: { (0, 0)} u [a, g] x [f, t] + R”, 
in the following way: 

4&O) = q(O, 070) 

s(Tp’, zE2’) = q(0, 274’3, 27rrp) for k> 1. 
(2.14) 

We see that s is periodic in each argument with period 1, so ~(0, 0) =s(l, 1). 
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Let K be a finite subset of k-values ordered increasingly such that (ri’], ri*]) is 
inside a small square with center in (1, 1) and side 2~~. Thus 

1 - E, < rj” 6 1 + Eq, 1=1,2,fork~K. (2.15) 

Let u(0) be some approximation to q(0, 0,O) and u(t) the solution of (2.12) with 
u(O) as initial value. Then we set 

s(zE”, TL*‘) = u(kT,) for k E K; ~(0, 0) = u(O). (2.16) 

Each coordinate of the stroboscopic function is interpolated on the net (rf’l, ri*l), 
k E K, to find s( 1, 1). The Poincare map is now defined by: 

P: R”+R” 

s( 1, 1) = P(s(0, 0)) = P(u(0)). 
(2.17) 

The quasi-periodic problem is hereby again reduced to a fixed point problem. 

3. STABILITY OF THE FIXED POINT 

Stability of periodic solutions of forced ODE with one forcing frequency is 
usually determined from the Floquet multipliers [2], but could equally well have 
been determined as the stability of the fixed point. Here we shall use the latter 
approach, since this also can be used in the case of quasi-periodic functions. 

Let x be the fixed point of the map P, so 

x = P(x). (3.1) 

If E is any disturbance, then by Taylor’s theorem (sincefis sufficiently smooth) 

P(x + E) = P(x) + DP(x) E + O( 11811’). (3.2) 

Let x + E be mapped into x + 6, then 

x + 6 = P(x + E) = P(x) + DP(x) E + O( /1&1\*). (3.3) 

Retaining only the lowest-order terms we get 

6 = DP(x) E. (3.4) 

x is stable when any disturbance E yields a 6 such that 116 11 < II&II. This is fulfilled if 
all eigenvalues of DP(x) are inside the unit circle. 

Another formulation is that P should be a contraction in a neighbourhood of x, 
and we can get the initial point by merely iterating the map P, starting with some 
x0 near to x. This we shall call the brute force method. 

Note that since Q = P-Z we get 

DP=DQ+Z. (3.5) 
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4. Commas AND PRACTICALITIES 

In this section we will comment on the following issues: 

(a) choice of initial conditions 

(b) choice of interpolating functions 

(c) choice of delta in computation of DQ 

(d) applied software 

(e) relation to bifurcation problems. 

(a) Choice of Initial Conditions 

Some good guess on the initial conditions must be known. This requirement 
arises from the nature of the Newton method. For linear ODES the Newton 
method will determine the solution in one iteration, and therefore we may use any 
initial values, as long as the solution of the ODE can be determined numerically. 

(b) Choice of Interpolating Functions 

Here we shall make some comments on the interpolation in the case p = 2. By 
construction of the Poincare map, we have to interpolate the stroboscopic function 
s in some interval around 1. 

The rk’s cannot be chosen at will and the derivative of s is not available. 
On the other hand we can take a smaller sq or include more points. To obtain a 

reasonable interpolation we have used natural cubic splines which are preferable 
when s is not continuous, and some jumps in the values of s may be observed. 

(c) Choice of Delta 

The delta is used in numerical approximation of the derivative. Let g: R” --t R be 
one of the functions in the map Q. Then the derivative in the direction of V, llull = 1, 
is 

ag g(x + du) - g(x) 
av’ 6 + O(4 (4.1) 

and the error is therefore proportional to 6. The statement follows from the Taylor 
series expansion of g. So 6 must be small in some sense. But g is computed with 
some error, say, proportional to E, and the numerator of (4.1) is therefore in error 
proportional to E,, so that 

error 
( 

dx+6v)-g(x) 
6 > 0 

co 5 
6 

according to which we shall choose 6 large. The optimal 6 should minimize the 
total error in ag/au, that is, minimize 

E(d)=$+6. 
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The optimal 6 is 6 = &:I2 and the error in ag/& is proportional to sjj2. We must 
therefore make an estimate of sg. First let us focus on the interpolation error. Let nj 
be the number of knots in an interval of length 2. .sq. T,. The knots are randomly 
distributed. Let h be the maximal distance between two neighbouring knots. Then 
Kershaw [3] has shown that the maximal approximation error 

for r in the subinterval 

where r,-mink.. {zk) = O(h In h) and max kcK{rk}-rb=O(hlnh) for h-0. As 
an approximation of h, place the ni knots equidistant in the interval, so 

h= 
2.~ .T, 
4. 

nj- 1 (4.2) 

Second, an error arises from the numerical solution of the ODE. We have not tried 
to estimate it. But the error will be significant when ni is large. So when ni is small 
the interpolation is error-determining, and when ni is large the numerical solution 
of the ODES is error-determining. For ni small, .sg is proportional to h4 and a 
proper 6 may be taken to be proportional to h2, where h is given by (4.2). We have 
used 6 = lop4 based on some experimentation. 

(d) Applied Software 

All calculations were performed in double precision on an IBM 3033 machine. 
Solution of the ODE was performed by the IMSL-routine DVERK using 5th- and 
6th-order Runge-Kutta methods with variable steplength, which is efficient when 
the equations are non-stiff. The local tolerance was set to 10p8. The interpolation 
by splines was performed by the IMSL-routines ICSCCU and ICSEVU. 

(e) Relation to Bifurcation Theory 

Equation (1.1) for which we want the quasi-periodic solution can be generalized 
by introducing some parameter v. Thus we consider 

i= f(t, x, 01)...) alp, v). (4.3) 

Then the quasi-periodic solution is also a function .of v, and we can “follow” the 
solution as a function of v. Bifurcation then takes place when the stable solution 
becomes unstable as a result of one or more of the eigenvalues of DP crossing the 
unit circle. 

In the above formulation the quasi-periodic solution was present from the very 
beginning. We will call it the basic solution. But quasi-periodic solutions may also 
arise as a result of bifurcation, for instance, in autonomous equations, where a 
quasi-periodic solution may bifurcate from a periodic solution. Also in a forced 
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system with one period T, the basic T-periodic solution may bifurcate into a 
quasi-periodic solution. 

In order to investigate bifurcation it is necessary to determine the eigenvalues of 
DP. The method described in Section 2 can be modified to handle the case of 
quasi-periodic solutions in autonomous ODES. This will be the subject of a 
forthcoming paper. A problem arises due to the fact that the two periods T, and Tz 
are not explicitly given in the equation. All that is known (or can be computed) is 
the return time for the Poincare map. The return time will in general depend on the 
initial condition. 

EXAMPLE 1. We consider the linear differential equation 

jl+2~Z+/IX=(/?-2)cosfit-2Jj:ccsinJZt+(/?--l)cost-201sinr 

where a,P are real, a*>/j. Thus ml=3 and w2=1, so T,=dn and T2=2rc. 
The complete solution is 

x=c,e r+* + c2er-’ + cos Ji t + cos t 

where r+ = -a&JZj, a*-/I > 0. c,, c2 are real constants. The transient part, 
which is-the solution of the homogeneous equation, is 

XtWlS =cle r+t + (-&-’ 

and the steady-state part, which is the particular solution, is 

q(w1 t, 02 t) = cos J3 t + cos t. 

Since this equation is linear, and the right-hand side consists of a T,-periodic part 
added to a T,-periodic part, it could have been solved using the superposition prin- 
ciple. 

We use ni = 4 points in the interpolation and E;= 0.2 and find that tk = /CT, for 
k = 4, 7, 10, 13 will give an increasing sequence of zk. 

For a = 2, /I = 1 we have r f < 0 and with (x, a) = (0,O) as initial condition we 
obtain the solution in one Newton iteration 

x = 1.992720023 

i = -0.0003792152. 

It compares favourably with the exact solution (x, i) = (2,O). The eigenvalues of 
the Poincare map are 

A, = -0.00038726 

I,=0 (within computing accuracy) 

thus confirming the stability of the solution. 
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For tk = kT, = k fi IT, k = 0, l,..., the stroboscopic function is 

where 

i,=+nod 1. 
2 

‘. ,. 
‘..., ,:’ 

I 1 -1 
0.0 0.5 1.0 

b . . . 

i i 

-F;;.b, ~YX~I -steady,-sta!e, response of the linear equation 2 + 4i + x = 
2 f  4 sm t Initial condltlons (x, z?) = (1.99272002, -0.0003792) at r=O. (a) 

First component of the stroboscopic function s(i,) for k = O,..., 100. (b) Second component of s(i,) versus 
lirst component of s(i,) for k = O,..., 100. This we call the strobed trajectory. (c) Time evolution of x, 
O~t<lOo. 
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In Fig. la we have plotted the first component of s versus ik, and in Fig. lb we have 
shown i(ik) as a function of x(ik). This is denoted the strobed trajectory. A plot of 
x as a function of time t is shown in Fig. lc for 0 < t < 100. For a = l/20 and 
fl= -l/100 we obtain r+= cl* JJY20 and r+ > 0 so we have an unstable 
solution. In one Newton iteration we get 

x = 1.963136492 

f = 0.00030599 1 

and the eigenvalues 

I. I= 0.73403979 

12* = 61.71872713 

thus confirming the instability of the solution. 

EXAMPLE 2. This example is discussed in [ 11. We consider the Dufling equation 

a + 0.05f + x + x3 = 0.3 cos t + 1.5 cos 0.115t. 

We see that o1 = 1.0 and o2 = 0.115, so that the forcing function is not a true 
quasi-periodic solution, since it is periodic with period T= 200.27~. However, T is 
too large for use of the Poincari map for the periodic case. Using (0,O) as initial 
value the brute force method converged to the fixed point in 5 iterations using a 
7-knot spline interpolation, where K = { 8, 9, 17, 18, 26, 34, 35) (so cq = 0.1). 

(x, i) = (1.219273582,0.3004775330) 

and the eigenvalues are 

(5.1) 

A. 1,2 = -0.02604 + i 0.05943 

using (5.1) as initial values. 
(0,O) is not close to the fixed point, and therefore Newton’s method used 4 

iterations, and determined 

(x, a) = (1.219294186,0.3005114519). 

Using (5.2) as initial values the eigenvalues are 

(5.2) 

A.1,2 = -0.02894 + i 0.05801. 

In both cases ljz1,21 c 1, so the solution is stable. Otherwise the brute force method 
would not converge. 

The stroboscopic function, the strobed trajectory and the evolutional behaviour 
of x are plotted in Figs. 2a,b,c using (5.2) as initial values. 
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i i 

FIG. 2. Quasi-periodic steady-state response of Duffing’s equation f  + 0.051+ x + x3 = 0.3 cos t + 
1.5 cos 0.115r. Initial conditions (x, 2) = (1.219294, 0.30051145) at f  = 0. (a) First component of 
stroboscopic function, i.e., x(kT,), k = 0, l,..., 200, T, = 27 versus the independent variable, ik. (b) The 
strobed trajectory, k = 0, l,..., 200. (c) Time evolution of x, 0 C t < 100. 

In [ 11 Chua and Ushida obtained the initial values 

(x, i) = (1.21332,0.33872) 

which compares very well with our results. 

EXAMPLE 3. This example is discussed in Cl]; we have another Dufing 
equation 

~+o.lf+x+X3=(1+COS0.115t)cost. 

T, and T, are as in Example 2. 
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a ‘- b 

0 50 100 

FIG. 3. Quasi-periodic steady-state response of Dufling’s equation 2 + 0.11+ x +x3 = 
(1 + cos 0.11%) cos t. Initial conditions (x, i) = (1.354439,0.1390661) at t = 0. (a) First component of 
stroboscopic function, k = 0, l,..., 200. (b) The strobed trajectory, k = 0, l,..., 200. (c) Time evolution of x, 
0 < I < 100. (d) Time evolution of 1, 0 $ t < 100. 

Using K= (8, 17, 26, 35) (so cq = 0.2) and taking (x, c?) = (0,O) as initial point, 
Newton’s method reaches the initial values as the steady-state solution in two 
iterations 

(x, it) = (1.3494521,0.12085215). 

The eigenvalues of the Poincart map were found to be 

A1,2 = 0.0018798 + i 0.0012263. 
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If we instead use K= (1, 7, 8, 9, 10, 16, 17, 18, 19, 25, 26, 27, 34, 35, 36}, sq =0.2, 
we obtain 

(x, i) = (1.354439,0.1390661) 

in two Newton iterations. 
The plots in Fig. 3 have been produced with this initial condition. 
In [ 1 ] Chua and Ushida found 

(x, i) = (1.35403,0.15168) 

which compares favourably with our result. 

CONCLUSIONS 

The Poincare map, which has already proved useful for the determination of 
periodic solutions of autonomous ODES, is also applicable to the determination of 
periodic solutions of forced ODES with one forcing frequency. Its applicability is 
due to the fact that only one point on the trajectory is considered. In this way the 
periodic solution becomes a fixed point in phase space, and the stability of a fixed 
point is equivalent to the stability of the periodic solution. Furthermore the method 
permits us to calculate stable and unstable solutions with equal ease. In this article 
these merits are extended to the case of quasi-periodic solutions. 

Generalized Fourier series can be used to find quasi-periodic solutions as well as 
Fourier series can be used to find periodic solutions. In neither case, however, can 
they be used to determine the stability of the solutions. 

In addition the Poincare map yields a clear picture of important qualitative 
aspects of the quasi-periodic solutions. 
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